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The modulational instability of broadband optical pulses in a four-state atomic system is investigated. In
particular, starting from a recently derived generalized nonlinear Schrödinger equation, a wave-kinetic equation
is derived. A comparison between coherent and random-phase wave states is made. It is found that the spatial
spectral broadening can contribute to the nonlinear stability of ultrashort optical pulses. In practical terms, this
could be achieved by using random-phase plate techniques.
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The propagation of ultrashort optical pulses in nonlinear
media is of great importance in a wide variety of applica-
tions, e.g., fiber optical systems �1,2�, atmospheric remote
sensing using femtosecond laser pulses in air �3–5�, and in-
ertial confinement fusion �6�. The nonlinear propagation of
ultrashort optical pulses can be modeled by using the nonlin-
ear Schrödinger equation with short-pulse nonlinear deriva-
tive corrections, which can give rise to the filamentation of
light pulses, and subsequent formation of light pipes. Modu-
lational and filamentational instabilities, therefore, some-
times pose problems concerning pulse propagation in nonlin-
ear media. Thus, for propagation times much longer than the
typical pulse length, it is of importance to find means for the
nonlinear stabilization of such optical pulses.

In this Brief Report, we investigate the statistical proper-
ties of a generalized nonlinear Schrödinger equation, taking
into account the Kerr nonlinearity, linear absorption, nonlin-
ear dispersion, delay in nonlinear refractive index, third-
order dispersion, differential absorption, and diffraction. The
equation is of relevance for Raman excited four-state atomic
systems. We derive an equivalent wave-kinetic equation that
governs the propagation of optical quasi-particles, enabling
us to study the effect of partial pulse coherence. The newly
derived equation is analyzed for the case of spectral pulse
broadening, and it is found that the relevant growth rate can

be significantly reduced if appropriate random-phase tech-
niques are used.

Recently, Hang et al. �7� derived a generalized nonlinear
Schrödinger equation �NLSE� that describes the nonlinear
propagation of optical pulses in Raman excited four-state
atomic systems �see Fig. 1�. In a dimensionless form, the
NLSE can be written as

i�zu + �t
2u + 2�u�2u = − i�d0u − d1�t��u�2u� − d2u�t�u�2 − d3�t

3u�

+ d4�tu − d5��
2 u , �1�

where u is the normalized pulse amplitude and dj for j=0 to
5 is the dimensionless coefficients for linear absorption, non-
linear dispersion, delay in nonlinear refractive index, third-
order dispersion, differential absorption, and diffraction, re-
spectively. Equation �1� thus describes the nonlinear
propagation of ultrashort optical pulses when the terms on
the right-hand side of Eq. �1� are significant �i.e., dj �1�
�16�. In what follows, we will look at the one-dimensional
problem, and thus set d5=0.

In order to analyze the spectral evolution of partially co-
herent optical pulses, we next introduce the Fourier trans-
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FIG. 1. Energy-level diagram showing the excitation of the rel-
evant four-state atomic system. Here �p is the center frequency of
the weak probe field, while �B and �C are the frequencies of two
strong cw control fields. The one-photon detuning frequencies are
defined according to ��p=�31−�p and ��B=�42−�B. Moreover,
2�p, 2�B, and 2�C are the Rabi frequencies for the indicated tran-
sitions, and two-photon resonance is assumed to always be main-
tained �7,8�.
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form of the two-point correlation function, i.e., the Wigner
function �9–11�

��z,t,�� =
1

2�
� d�e−i���u*�z,t + �/2�u�z,t − �/2�	 , �2�

where the angular bracket denotes the ensemble average
�12�. The Wigner function represents a generalized distribu-
tion function for optical quasiparticles. The Wigner method
�13�, as well as the equivalent mutual coherence method
�14�, have been used to analyze the modulational instability
in the “standard” nonlinear Schrödinger picture, in which the
right-hand side of Eq. �1� is identically zero. From the defi-
nition �2� follows the normalization

I�z,t� 
 ��u�z,t��2	 =� d���z,t,�� , �3�

giving the pulse intensity in terms of the Wigner function.
Applying the z derivative to the definition �2�, we obtain

the wave-kinetic equation for optical quasiparticles,

�z� − 2��t� − 4I sin�1

2
��t�����

= − 2d0� − d12�I sin�1

2
��t����� − �t�I cos�1

2
��t�������

+ 2d2��tI�cos�1

2
��t����� − d3�3�2 −

1

4
�t

2��t� − 2d4�� .

�4�

The wave-kinetic equation �4� determines the phase-space
evolution of partially coherent optical wave packets. In the
low-frequency limit, we can retain only the first term in the
operator expansions to obtain

�z� − 2��t� − 2�tI��� = − 2d0� − d1���tI��� − �t�I���

+ 2d2��tI − 3d3�2�t� − 2d4�� .

�5�

Here we see that the terms on the left-hand side of Eq. �5�
resemble the terms in a Vlasov equation. Moreover, Eqs. �4�
and �5� have a time-independent solution,

�̄�z,�� = �0���e−2�d0+d4��z, �6�

exhibiting a spatial diffusive influence of the linear and dif-
ferential absorption. For a coherent distribution, i.e., �0���
= I0���−�0� for some frequency �0, we obtain the intensity

Ī�z�= I0 exp�−2�d0+d4�0�z�, while for a Gaussian distribu-
tion �0���= �I0 /�2���exp�−��−�0�2 /2�2� with the spectral

width �, we obtain the intensity Ī�z�= I0 exp�−2�d0+d4�0

−d4�2z�z�. We note that the finite spectral width in the latter
case gives rise to growing behavior after a certain distance of
propagation. In fact, the spatial intensity decay halts for
zcrit= �d0+d4�0� /d4�2, indicating the breakdown of the
above model, as we do not expect growing modes from loss
terms. For a broad spectral distribution, this distance may be
short.

Next, we analyze the modulational instability of broad-
band optical pulses that are governed by Eq. �4�. Letting
��z , t ,��= �̄�z ,��+�1�z ,��exp�iKz− i�t� in the latter, where
��1 � ��̄, we linearize the wave kinetic equation against �1. If
the dimensionless perturbation wave number satisfies
K	d0 ,d4�, the perturbation wavelength is much smaller
than the decay length. Thus, we may treat the background
distribution as a constant, and neglect the terms containing d0
and d4�. We then obtain the nonlinear dispersion relation

1 =� d�
�2 − d1�� + �/2� − d2���̄�z,� − �/2� − �2 − d1�� + �/2� + d2���̄�z,� + �/2�

K + 2�� + d1�Ī − d3�3�2 + �2/4��
. �7�

The case of higher-order dispersive corrections to the non-
linear Schrödinger equation in the Wigner picture has been
treated in the wave-number domain in Ref. �15�.

In the case of coherent optical pulses, we let �0���
= I0���−�0�. Here the dispersion relation �7� reduces to

K = − �2�0 + �2d1 + d2�Ī − d3�3�0
2 + �2��� ± ��d1 + d2�2Ī2�2

+ �1 − 3d3�0�2�4 − 2�2 − d1�0��1 − 3d3�0�Ī�2�1/2. �8�

For simplicity, we focus on the case �0=0, at which we have
the growth rate 
=−Im�K�,


 = �4Ī�2 − �4 − �d1 + d2�2Ī2�2�1/2, �9�

where the nonlinear dispersion and delay in the nonlinear
refractive index gives a stabilizing effect to the regular Kerr
modulational instability �see Fig. 2�. We note that the modu-
lational instability follows as a consequence of the nonlinear
pulse propagation equation �1� governed by the underlying
dyamics of the four-state atomic system �8�. The latter sys-
tem is in the form of a four-wave mixing set of equations,
and it is therefore perhaps not surprising that the modula-
tional instability occurs for the corresponding nonlinear
pulse propagation. However, other level configurations may
in principle possess similar instability properties, but the is-
sue of the uniqueness of such instabilities to the nonlinear
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four-state atomic system is left for future research.
If the background pulse u0 has a random phase, with a

coherence width �, this corresponds to a Lorentz distribution

�0��� =
I0

�

�

�2 + �2 . �10�

For the case of d4=0, i.e., vanishing differential absorption,
we can integrate the dispersion relation �7� for �0 given by
the Lorentz distribution �10� to obtain

K = − ��2d1 + d2�Ī − d3�2�� − 3d3�2� + 2i��

± ��d1 + d2�2Ī2�2 + �1 + 3id3��2�4

− 2�2 + id1���1 + 3id3��Ī�2�1/2. �11�

From the dispersion relation �11� we see that the spectral
broadening interacts in nontrivial ways with the modifica-
tions of the nonlinear Schödinger equation. For a pure Kerr
nonlinearity, i.e., dj =0 for all j, the random phase of the
background pulse will give rise to a reduction of the modu-
lational instability growth rate �13,14�. Here we find that the
random phase will also contribute to the real part of K and
the imaginary contribution via interactions between the cor-
rections to the Kerr nonlinearity and spectral broadening. As
noted in �15�, higher-order dispersive effects may affect the
modulational instability growth rate, but on the perturbative
level, third-order dispersion only gives a shift in the real
wave number. This can be seen by setting d1=d2=0 and
d3� ,d3��1. Linearizing Eq. �11�, we obtain

K = d3�3 − 3d3�2� + 2i�� ± i�4Ī�2 − �4�1/2

±
3d3��2

2�4Ī�2 − �4�1/2
�2�2 − 4Ī� , �12�

and we see that the third-order dispersion only contributes to
the real wave-number shift.

We have solved for the modulational instability growth
rate numerically and plotted the result for different parameter

values in Figs. 2 and 3. We note that when �=0, we regain
the coherent growth rate �9�. Moreover, the third-order dis-
persion only couples to � and is thus not present in the
coherent case.

From Fig. 3, it is clear that for d3=0, the partial coherence
of the background pulse gives rise to a reduced growth rate,
and can thus act as a means for stabilizing optical pulses in
four-state atomic systems described by Eq. �1�. The effect of
third-order dispersion is to further reduce the instability
growth rate, as expected, and the new branches in the modu-
lational instability growth that occurs for high-frequency per-
turbations, i.e., ��1, are not valid, as the assumptions un-
derlying the derivation of Eq. �1� are no longer satisfied.
Thus, the strongly growing modes depicted in Fig. 3 for
��1 are not physical.

In conclusion, we have presented an investigation of the
modulational instability of broadband optical pulses in Ra-
man excited four-state atomic systems. For this purpose, we
have obtained a wave kinetic equation from the modified
NLSE, which accounts for numerous nonideal effects em-
bedded on the right-hand side of Eq. �1�. Using standard
technique, we then derive a nonlinear dispersion relation
from the wave kinetic equation. The nonlinear dispersion is
analyzed for coherent and broadband spectra of optical
pulses. It is found that the growth rate of the modulational
instability is reduced in the presence of a Lorentzian optical
pulse distribution. A reduced growth rate insures stability of
optical pulses over long distances in four-state atomic sys-
tems.
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FIG. 2. The coherent modulational instability growth rate 

plotted as a function of �, using Eq. �11� with �=0 �see Eq. �9��.
The full thick curve has d1=d2=d3=d4=0, giving the Kerr modu-
lational instability growth rate, while the dashed curve has
d1=d2=1 and d3=d4=0. We see that the effect of nonlinear disper-
sion and delay in the nonlinear refractive index is to reduce the
modulational instability growth rate.

FIG. 3. The incoherent modulational instability growth rate 

plotted as a function of �, using Eq. �11�, for different parameter
combinations. The full thick curve is the coherent Kerr modula-
tional instability growth rate, i.e., d1=d2=d3=d4=�=0. The re-
maining curves have �=0.1 and d4=0. From the top, the dashed-
dotted curve has d1=d2=0 and d3=1, the dashed curve has d1=d2

=d3=d4=0, the dotted curve has d1=d2=d3=1, and the curve with
long dashes has d1=d2=1 and d3=0. The strongly growing modes
for ��1 are, however, not physical, as the underlying assumptions
of Eq. �1� are no longer satisfied �see Eq. �12��.
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